Numerical Results of Sub-Cauchy Problem for Linear Elasticity
نویسندگان
چکیده
منابع مشابه
Optimization of a Random Cauchy Problem in Linear Elasticity
B. Faverjon1, B. Puig and T.N. Baranger3 1 Université de Lyon, CNRS, INSA-Lyon, LaMCoS UMR5259, F-69621, France, [email protected] and http://lamcos.insa-lyon.fr 2 IPRA, Université de Pau, 64013 Pau. France, [email protected] and http://web.univ-pau.fr 3 Université de Lyon, CNRS, Université Lyon1, LaMCoS UMR5259, F-69622, France, [email protected] and http://...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولFirst-Order System Least Squares For Linear Elasticity: Numerical Results
Two first-order system least squares (FOSLS) methods based on L norms are applied to various boundary value problems of planar linear elasticity. Both use finite element discretization and multigrid solution methods. They are two-stage algorithms that solve first for the displacement flux variable (the gradient of displacement, which easily yields the deformation and stress variables), then for...
متن کاملThe Cauchy Relations in Linear Elasticity Theory
c = c = c . (2) 1 We use the notation of Schouten [9]. Symmetrization over two indices is denoted by parentheses, A(ij) := (Aij + Aji)/2!, antisymmetrization by brackets, B[ij] := (Bij − Bji)/2!. The analogous is valid for more indices, as, e.g., in (13): c i[jk]l = (c − c)/2!. If one or more indices are exempt from (anti)symmetrization, they are enclosed by vertical bars, as, e.g., in (12), c ...
متن کاملAn Invariant Method of Fundamental Solutions for the Cauchy Problem in Two-Dimensional Isotropic Linear Elasticity
In this paper, we propose a numerical algorithm based on the method of fundamental solutions (MFS) for the Cauchy problem in two-dimensional linear elasticity. Through the use of the double-layer potential function, we give the invariance property for a problem with two different descriptions. In order to adapt this invariance property, we give an invariant MFS to satisfy this invariance proper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2019
ISSN: 2321-9653
DOI: 10.22214/ijraset.2019.6284